高质量的HDRI(高动态范围图像),通常是HDR Panoramas,是创建图形中3D场景的3D场景的最受欢迎的方法之一。考虑到捕获HDRI的困难,高度需要一种多功能和可控的生成模型,外行用户可以直观地控制生成过程。但是,现有的最新方法仍然难以合成复杂场景的高质量全景。在这项工作中,我们提出了一个零击文本驱动的框架Text2Light,以生成4K+分辨率HDRIS,而无需配对培训数据。给定一个自由形式的文本作为场景的描述,我们通过两个专用步骤合成相应的HDRI:1)在低动态范围(LDR)(LDR)和低分辨率的文本驱动全景生成,以及2)超分辨率逆音映射在分辨率和动态范围内扩大LDR Panorama。具体来说,为了获得零击文本驱动的全景生成,我们首先将双代码簿作为不同环境纹理的离散表示形式。然后,在预先训练的剪辑模型的驱动下,一个文本条件的全局采样器学会了根据输入文本从全局代码簿中采样整体语义。此外,一个结构感知的本地采样器学会了以整体语义为指导的LDR Panoramas逐个贴片。为了获得超分辨率的逆音映射,我们从LDR Panorama得出了360度成像的连续表示,作为一组固定在球体上的结构性潜在代码。这种连续表示可以使多功能模块同时提高分辨率和动态范围。广泛的实验证明了Text2light在产生高质量HDR全景方面具有卓越的能力。此外,我们还展示了我们在现实渲染和沉浸式VR中工作的可行性。
translated by 谷歌翻译
我们提出了一种可以量化非凸神经网络的权重相似性的重量相似性度量方法。为了了解不同训练的模型的重量相似性,我们建议从神经网络的权重中提取特征表示。我们首先通过引入链条归一化规则来使神经网络的权重标准化,该规则用于体重表示学习和权重相似度度量。我们将传统的假设测试方法扩展到假设训练测试统计推断方法,以验证神经网络的体重相似性的假设。有了链条归一化规则和新的统计推断,我们研究了多层感知器(MLP),卷积神经网络(CNN)和复发性神经网络(RNN)的重量相似性度量,并发现相同神经的重量用随机梯度下降(SGD)算法优化的网络收敛到公制空间中的类似局部解决方案。重量相似性度量为神经网络的局部解决方案提供了更多的了解。在几个数据集上的实验始终验证了权重相似度度量的假设。
translated by 谷歌翻译
我们提出了一个新的照明估计和编辑框架,以从单个有限视野(LFOV)图像中生成高动力范围(HDR)室内全景照明,该图像由低动力范围(LDR)摄像机捕获。现有的照明估计方法要么直接回归照明表示参数,要么将此问题分解为LFOV到panorama和LDR-TO-HDR照明子任务。但是,由于部分观察,高动力范围的照明以及场景的内在歧义,照明估计仍然是一项艰巨的任务。为了解决这个问题,我们建议将LDR和HDR Panorama合成融合到统一框架中,提出了一个耦合的双式全景全景合成网络(Stylelight)。 LDR和HDR Panorama合成共享类似的发电机,但具有单独的歧视器。在推断期间,给定LDR LFOV图像,我们提出了一种焦点掩盖的GAN反转方法,以通过LDR Panorama合成分支找到其潜在代码,然后通过HDR Panorama合成分支合成HDR Panorama。 Stylelight将LFOV-TO-PANORAMA和LDR-HDR LIGHTING GENTARTION带入统一的框架,从而大大改善了照明估计。广泛的实验表明,我们的框架在室内照明估计上实现了优于最先进方法的表现。值得注意的是,Stylelight还可以在室内HDR Panoramas上进行直观的照明编辑,这适用于现实世界中的应用。代码可从https://style-light.github.io获得。
translated by 谷歌翻译
视频对视频合成(VID2VID)在从一系列语义图中生成照片真实视频方面取得了显着的结果。但是,该管道遭受了高计算成本和较长的推理潜伏期的损失,这在很大程度上取决于两个基本因素:1)网络体系结构参数,2)顺序数据流。最近,基于图像的生成模型的参数已通过更有效的网络体系结构显着压缩。然而,现有方法主要集中于减肥网络体系结构,而忽略了顺序数据流的大小。此外,由于缺乏时间连贯性,基于图像的压缩不足以压缩视频任务。在本文中,我们提出了一个时空的压缩框架,\ textbf {fast-vid2vid},该框架着重于生成模型的数据方面。它首次尝试减少计算资源并加速推理。具体而言,我们在空间上压缩输入数据流并减少时间冗余。在提出的时空知识蒸馏之后,我们的模型可以使用低分辨率数据流合成密钥框架。最后,快速VID2VID通过运动补偿以轻微延迟为中间框架插入中间框架。在标准基准测试中,快速VID2VID围绕实时性能达到20 fps,并在单个V100 GPU上节省了约8倍的计算成本。
translated by 谷歌翻译
denoisis扩散概率模型(DDPM)能够通过引入独立的噪声吸引分类器来在每次deosoing过程的时间步骤中提供条件梯度指导,从而使有条件的图像从先前的噪声到真实数据。但是,由于分类器能够轻松地区分不完全生成的图像仅具有高级结构的能力,因此梯度是一种类信息指导,倾向于尽早消失,导致从条件生成过程中崩溃到无条件过程。为了解决这个问题,我们从两个角度提出了两种简单但有效的方法。对于抽样程序,我们将预测分布的熵作为指导消失水平的度量,并提出一种熵感知的缩放方法,以适应性地恢复条件语义指导。每个生成样品的%。对于训练阶段,我们提出了熵吸引的优化目标,以减轻噪音数据的过度自信预测。在Imagenet1000 256x256中,我们提出的采样方案和训练有素的分类器(预训练的条件和无条件的DDPM模型可以实现10.89%(4.59至4.59至4.09))和43.5%(12至6.78)FID改善。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译